ELIZABETH MUNCH $517-432-0619 \diamond$ muncheli@msu.edu Dept of Computational Mathematics, Science, and Engineering \diamond Dept of Mathematics Michigan State University \diamond East Lansing, MI # **EDUCATION** | Duke University, Durham, NC | May 2012 | |---|-------------------------| | Ph.D. Dept. of Mathematics | May 2013 | | · Thesis: Applications of Persistent Homology to Time Varying Systems | D 0010 | | M.A. Dept. of Mathematics | Dec 2010 | | University of Rochester, Rochester, NY | | | B.S. Mathematics, Summa Cum Laude, School of Arts and Sciences | May 2008 | | B.M. Harp Performance with High Distinction, Eastman School of Music | May 2008 | | RESEARCH EXPERIENCE | | | Michigan State University, East Lansing, MI | | | Dept. of Computational Mathematics, Science and Engineering (CMSE) | | | Dept. of Mathematics | | | Associate Professor | July 2022 – Present | | Assistant Professor | Aug 2017 – July 2022 | | University at Albany – SUNY, Albany, NY | | | Dept. of Mathematics & Statistics | | | Assistant Professor | $Sept\ 2014-July\ 2017$ | | Dept. of Computer Science | | | Affiliated Faculty | July 2015 – July 2017 | | University of Minnesota, Minneapolis, MN | | | Institute for Mathematics and Its Applications | | | Postdoctoral Fellow | Sept 2013 – Aug 2014 | | Duke University, Durham, NC | | | Dept. of Mathematics | | | Visiting Assistant Professor | June 2013 – Aug 2013 | | Graduate Research Assistant | Sept 2008 – May 2013 | ### AWARDS AND HONORS Withrow Teaching Excellence Award, College of Engineering, Michigan State University, 2023 NSF CAREER Award, 2022 Jo Rae Wright Fellowship for Outstanding Women in Science, Duke University, 2012-2013 Phi Beta Kappa, University of Rochester, May 2008 Performer's Certificate in Harp, May 2008 Lois S. Rogers Scholarship, Eastman School of Music, 2004-2008 Performer's Certificate, Eastman School of Music, 2008 Presser Scholarship, Eastman School of Music, 2007 #### **PUBLICATIONS** Due to working in an interdisciplinary setting, my work follows many different conventions for authorship. Theoretical mathematics and theoretical computer science tend to be published alphabetically. Applied mathematics and other domain settings tend to be published in descending order of contribution, with graduate students and postdocs listed first; followed by PIs. # Preprints - [1] Dhananjay Bhaskar, Jessica Moore, Feng Gao, Bastian Rieck, Firas Khasawneh, Elizabeth Munch, Valentina Greco, and Smita Krishnaswamy. "Capturing Spatiotemporal Signaling Patterns in Cellular Data with Geometric Scattering Trajectory Homology". In: (2023). DOI: 10.1101/2023.03.22.533807. bioRxiv: 10.1101/2023.03.22.533807. - [2] Erin W. Chambers, Elizabeth Munch, Sarah Percival, and Bei Wang. "Bounding the Interleaving Distance for Mapper Graphs with a Loss Function". In: (July 2023). DOI: 10.48550/ARXIV.2307. 15130. arXiv: 2307.15130 [cs.CG]. - [3] Ty Easley, Kevin Freese, Elizabeth Munch, and Janine Bijsterbosch. "Using persistent homology to understand dimensionality reduction in resting-state fMRI". In: (June 2023). DOI: 10.48550/ARXIV. 2306.13802. arXiv: 2306.13802 [cs.CG]. - [4] Sarah McGuire, Elizabeth Munch, and Matthew Hirn. "NervePool: A Simplicial Pooling Layer". In: (2023). DOI: 10.48550/ARXIV.2305.06315. arXiv: 2305.06315 [cs.CG]. - [5] Elizabeth Munch. "An Invitation to the Euler Characteristic Transform". In: (Oct. 2023). DOI: 10. 48550/ARXIV.2310.10395. arXiv: 2310.10395 [cs.CG]. - [6] Sourabh Palande, Jeremy Arsenault, Patricia Basurto-Lozada, Andrew Bleich, Brianna N. I. Brown, Sophia F. Buysse, Noelle A. Connors, Sikta Das Adhikari, Kara C. Dobson, Francisco Xavier Guerra-Castillo, Maria F. Guerrero-Carrillo, Sophia Harlow, Héctor Herrera-Orozco, Asia T. Hightower, Paulo Izquierdo, MacKenzie Jacobs, Nicholas A. Johnson, Wendy Leuenberger, Alessandro Lopez-Hernandez, Alicia Luckie-Duque, Camila Martínez-Avila, Eddy Mendoza-Galindo, David Plancarte, Jenny M. Schuster, Harry Shomer, Sidney C. Sitar, Anne K. Steensma, Joanne Elise Thomson, Damián Villaseñor-Amador, Robin Waterman, Brandon M. Webster, Madison Whyte, Sofía Zorilla-Azcué, Beronda L. Montgomery, Aman Y. Husbands, Arjun Krishnan, Sarah Percival, Elizabeth Munch, Robert VanBuren, Daniel H. Chitwood, and Alejandra Rougon-Cardoso. "Expression-based machine learning models for predicting plant tissue identity". In: (2023). DOI: 10.1101/2023.08. 20.554029. bioRxiv: 10.1101/2023.08.20.554029. - [7] Rehab Alharbi, Erin Wolf Chambers, and Elizabeth Munch. "Realizable piecewise linear paths of persistence diagrams with Reeb graphs". In: (July 9, 2021). arXiv: 2107.04654 [cs.CG]. - [8] Brian Bollen, Erin Wolf Chambers, Joshua Levine, and Elizabeth Munch. "Reeb Graph Metrics from the Ground Up". In: (2021). arXiv: 2110.05631 [cs.CG]. - [9] Ellen Gasparovic, Elizabeth Munch, Steve Oudot, Katharine Turner, Bei Wang, and Yusu Wang. "Intrinsic Interleaving Distance for Merge Trees". In: (July 31, 2019). arXiv: 1908.00063 [cs.CG]. #### **Journal Articles** Whenever possible, I post preprints of my papers to the arXiv. Where available, I include links to both the publised versions (via DOI or URL), as well as to the arXiv posting. - [10] Erik J. Amézquita, Michelle Y. Quigley, Patrick J. Brown, Elizabeth Munch, and Daniel H. Chitwood. "Allometry and volumes in a nutshell: Analyzing walnut morphology using three-dimensional X-ray computed tomography". In: *The Plant Phenome Journal* 7.1 (2024), e20095. DOI: 10.1002/ppj2. 20095. bioRxiv: 10.1101/2023.09.26.559651. - [11] Sunia Tanweer, Firas A. Khasawneh, and Elizabeth Munch. "Robust crossings detection in noisy signals using topological signal processing". In: Foundations of Data Science (2024). ISSN: 2639-8001. DOI: 10.3934/fods.2024006. arXiv: 2301.07703 [cs.CG]. - [12] Sunia Tanweer, Firas A. Khasawneh, Elizabeth Munch, and Joshua R. Tempelman. "A topological framework for identifying phenomenological bifurcations in stochastic dynamical systems". In: *Nonlinear Dynamics* (Feb. 2024). ISSN: 1573-269X. DOI: 10.1007/s11071-024-09289-1. arXiv: 2305.03118 [math.DS]. - [13] Levent Batakci, Abigail Branson, Bryan Castillo, Candace Todd, Erin Wolf Chambers, and Elizabeth Munch. "Comparing Embedded Graphs Using Average Branching Distance". In: *Involve, a Journal of Mathematics* 16.3 (Aug. 2023), pp. 365–388. DOI: 10.2140/involve.2023.16.365. arXiv: 2210.10181 [cs.CG]. - [14] Maike Buchin, Erin Chambers, Pan Fang, Brittany Terese Fasy, Ellen Gasparovic, Elizabeth Munch, and Carola Wenk. "Distances Between Immersed Graphs: Metric Properties". In: La Mathematica (2023). DOI: 10.1007/s44007-022-00037-8. - [15] Audun Myers, Firas A. Khasawneh, and Elizabeth Munch. "Persistence of Weighted Ordinal Partition Networks for Dynamic State Detection". In: SIAM Journal on Applied Dynamical Systems 22.1 (2023), pp. 65–89. DOI: 10.1137/22m1476848. arXiv: 2205.08349 [stat.ML,]. - [16] Audun Myers, David Muñoz, Firas A. Khasawneh, and Elizabeth Munch. "Temporal Network Analysis Using Zigzag Persistence". In: EPJ Data Science 12.6 (2023). DOI: 10.1140/epjds/s13688-023-00379-5. arXiv: 2205.11338 [cs.CG]. - [17] Audun D. Myers, Max M. Chumley, Firas A. Khasawneh, and Elizabeth Munch. "Persistent homology of coarse-grained state-space networks". In: *Phys. Rev. E* 107 (3 2023), p. 034303. DOI: 10.1103/PhysRevE.107.034303. arXiv: 2206.02530 [stat.ML]. - [18] Sourabh Palande, Joshua A. M. Kaste, Miles D. Roberts, Kenia Segura Abá, Carly Claucherty, Jamell Dacon, Rei Doko, Thilani B. Jayakody, Hannah R. Jeffery, Nathan Kelly, Andriana Manousidaki, Hannah M. Parks, Emily M. Roggenkamp, Ally M. Schumacher, Jiaxin Yang, Sarah Percival, Jeremy Pardo, Aman Y. Husbands, Arjun Krishnan, Beronda L Montgomery, Elizabeth Munch, Addie M. Thompson, Alejandra Rougon-Cardoso, Daniel H. Chitwood, and Robert VanBuren. "Topological data analysis reveals a core gene expression backbone that defines form and function across flowering plants". In: *PLOS Biology* 21.12 (Dec. 2023). Ed. by Hajk-Georg Drost, e3002397. ISSN: 1545-7885. DOI: 10.1371/journal.pbio.3002397. bioRxiv: 10.1101/2022.09.07.506951. - [19] Erik J. Amézquita, Michelle Y. Quigley, Tim Ophelders, Danelle Seymour, Elizabeth Munch, and Daniel H. Chitwood. "The shape of aroma: Measuring and modeling citrus oil gland distribution". In: *Plants, People, Planet* (2022). DOI: 10.1002/ppp3.10333. bioRxiv: 10.1101/2022.04.14.488418. - [20] İsmail Güzel, Elizabeth Munch, and Firas A. Khasawneh. "Detecting bifurcations in dynamical systems with CROCKER plots". In: *CHAOS* 32.093111 (2022). Full version of [44]. Chosen as featured article in Chaos. DOI: 10.1063/5.0102421. arXiv: 2206.04861 [math.DS]. - [21] Jose A. Perea, Elizabeth Munch, and Firas A. Khasawneh. "Approximating Continuous Functions on Persistence Diagrams Using Template Functions". In: Foundations of Computational Mathematics (2022). DOI: 10.1007/s10208-022-09567-7. arXiv: 1902.07190 [cs.CG, math.AT, math.ST, stat.ML, stat.TH]. - [22] Erik J Amézquita, Michelle Y Quigley, Tim Ophelders, Jacob B. Landis, Daniel Koenig, Elizabeth Munch, and Daniel H Chitwood. "Measuring hidden phenotype: Quantifying the shape of barley seeds using the Euler Characteristic Transform". In: in silico Plants (2021). DOI: 10.1093/insilicoplants/diab033. bioRxiv: 10.1101/2021.03.27.437348. - [23] Adam Brown, Omer Bobrowski, Elizabeth Munch, and Bei Wang. "Probabilistic convergence and stability of random mapper graphs". In: *Journal of Applied and Computational Topology* (2021). DOI: 10.1007/s41468-020-00063-x. arXiv: 1909.03488v1. - [24] Erik J. Amézquita, Michelle Y. Quigley, Tim Ophelders, Elizabeth Munch, and Daniel H. Chitwood. "The shape of things to come: Topological data analysis and biology, from molecules to organisms". In: *Developmental Dynamics* (2020). Featured cover article. DOI: 10.1002/dvdy.175. - [25] Zixuan Cang, Elizabeth Munch, and Guo-Wei
Wei. "Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis". In: *Journal of Applied and Computational Topology* (2020). DOI: 10.1007/s41468-020-00057-9. arXiv: 1802.04677. - [26] Sarah Tymochko, Elizabeth Munch, Jason Dunion, Kristen Corbosiero, and Ryan Torn. "Using Persistent Homology to Quantify a Diurnal Cycle in Hurricane Felix". In: *Pattern Recognition Letters* 133 (2020), pp. 137–143. ISSN: 0167-8655. DOI: 10.1016/j.patrec.2020.02.022. arXiv: 1902.06202. - [27] Sarah Tymochko, Elizabeth Munch, and Firas A. Khasawneh. "Using Zigzag Persistent Homology to Detect Hopf Bifurcations in Dynamical Systems". In: *Algorithms* 13.11 (2020), p. 278. DOI: 10. 3390/a13110278. arXiv: 2009.08972. - [28] Mitchell Eithun, Daniel H. Chitwood, James Larson, Gregory Lang, and Elizabeth Munch. "Isolating phyllotactic patterns embedded in the secondary growth of sweet cherry (Prunus avium L.) using magnetic resonance imaging". In: *Plant Methods* 15.1 (2019). DOI: 10.1186/s13007-019-0496-7. arXiv: 1812.03321. - [29] Audun Myers, Elizabeth Munch, and Firas A. Khasawneh. "Persistent Homology of Complex Networks for Dynamic State Detection". In: *Physical Review E* 100.2 (2019), p. 022314. DOI: 10.1103/PhysRevE.100.022314. arXiv: 1904.07403. - [30] Vin de Silva, Elizabeth Munch, and Anastasios Stefanou. "Theory of interleavings on categories with a flow". In: *Theory and Applications of Categories* 33.21 (2018), pp. 583–607. arXiv: 1706.04095. - [31] Firas A. Khasawneh and Elizabeth Munch. "Topological data analysis for true step detection in periodic piecewise constant signals". In: *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science* 474.2218 (2018), p. 20180027. DOI: 10.1098/rspa.2018.0027. arXiv: 1805.06403. - [32] Elizabeth Munch. "A User's Guide to Topological Data Analysis". In: *Journal of Learning Analytics* 4.2 (2017). DOI: 10.18608/jla.2017.42.6. - [33] Paul Bendich, Sang Peter Chin, Jesse Clark, Jonathan Desena, John Harer, Elizabeth Munch, Andrew Newman, David Porter, David Rouse, Nate Strawn, and Adam Watkins. "Topological and statistical behavior classifiers for tracking applications". In: *IEEE Transactions on Aerospace and Electronic Systems* 52.6 (2016), pp. 2644–2661. DOI: 10.1109/taes.2016.160405. arXiv: 1406.0214. - [34] Vin de Silva, Elizabeth Munch, and Amit Patel. "Categorified Reeb Graphs". In: *Discrete & Computational Geometry* (2016), pp. 1–53. ISSN: 1432-0444. DOI: 10.1007/s00454-016-9763-9. arXiv: 1501.04147. - [35] Firas A. Khasawneh and Elizabeth Munch. "Chatter detection in turning using persistent homology". In: *Mechanical Systems and Signal Processing* 70-71 (2016), pp. 527–541. ISSN: 0888-3270. DOI: 10.1016/j.ymssp.2015.09.046. - [36] Elizabeth Munch, Katharine Turner, Paul Bendich, Sayan Mukherjee, Jonathan Mattingly, and John Harer. "Probabilistic Fréchet means for time varying persistence diagrams". In: *Electron. J. Statist.* 9 (2015), pp. 1173–1204. DOI: 10.1214/15-EJS1030. arXiv: 1307.6530. - [37] Elizabeth Munch, Michael Shapiro, and John Harer. "Failure filtrations for fenced sensor networks". In: The International Journal of Robotics Research 31.9 (2012), pp. 1044–1056. DOI: 10.1177/0278364912451671. arXiv: 1109.6535. - [38] Elizabeth Munch and C. Douglas Haessig. "Counting prime paths in fractals built from triangles". In: Journal for Undergraduate Research, University of Rochester (2008). #### Computer Science Conference Proceedings My work is interdisciplinary and often crosses between mathematics and theoretical computer science. In CS, both journals and selective proceedings are highly regarded venues for publications. The proceedings have the advantage of high visibility and a shortened time to press. These venues are peer-reviewed by a general minimum of between 3 and 5 evaluators and can be highly competitive. Acceptance rates are provided when known. Most notable conferences in my work are the Symposium on Computational Geometry (SoCG), which is the top conference in Applied Topology and Geometry [39, 41, 42]; and IEEE Scientific Visualization (SciVis) published in the journal TVCG, which is the top conference in visualization [40]. [39] Erin Wolf Chambers, Elizabeth Munch, and Tim Ophelders. "A Family of Metrics from the Truncated Smoothing of Reeb Graphs". In: 37th International Symposium on Computational Geometry (SoCG 2021). Ed. by Kevin Buchin and Éric Colin de Verdière. Vol. 189. Leibniz International Proceedings in Informatics (LIPIcs). Main session acceptance rate: 35%. Dagstuhl, Germany: Schloss Dagstuhl – - Leibniz-Zentrum für Informatik, 2021, 22:1–22:17. ISBN: 978-3-95977-184-9. DOI: 10.4230/LIPIcs. SoCG.2021.22. arXiv: 2007.07795 [cs.CG]. - [40] Lin Yan, Yusu Wang, Elizabeth Munch, Ellen Gasparovic, and Bei Wang. "A Structural Average of Labeled Merge Trees for Uncertainty Visualization". In: *IEEE Transactions on Visualization and Computer Graphics* (2019). Main session acceptance rate: 26%, pp. 1–1. DOI: 10.1109/tvcg.2019. 2934242. arXiv: 1908.00113. - [41] Elizabeth Munch and Bei Wang. "Convergence between Categorical Representations of Reeb Space and Mapper". In: 32nd International Symposium on Computational Geometry (SoCG 2016). Ed. by Sándor Fekete and Anna Lubiw. Vol. 51. Leibniz International Proceedings in Informatics (LIPIcs). Main session acceptance rate: 38%. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 53:1–53:16. ISBN: 978-3-95977-009-5. DOI: 10.4230/LIPIcs.SoCG.2016.53. arXiv: 1512.04108. - [42] Ulrich Bauer, Elizabeth Munch, and Yusu Wang. "Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs". In: 31st International Symposium on Computational Geometry (SoCG 2015). Ed. by Lars Arge and János Pach. Vol. 34. Leibniz International Proceedings in Informatics (LIPIcs). Main session acceptance rate: 38%. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 461–475. DOI: 10.4230/LIPIcs.SOCG.2015.461. arXiv: 1412.6646. # Other Conference Proceedings This section includes conference papers either from non-computer science conferences, or from papers submitted to workshops where the paper is not part of the main session. - [43] Erin Chambers, Elizabeth Munch, and Tim Ophelders. "A quality measure for Reeb graph drawings". In: Euro CG. 2022. - [44] İsmail Güzel, Elizabeth Munch, and Firas Khasawneh. "A Case Study on Identifying Bifurcation and Chaos with CROCKER Plots". In: *Proceedings of TDA at SDM (SIAM Data Mining)*. Ed. by R. W. R. Darling, John A. Emanuello, Emilie Purvine, and Ahmad Ridley. Full version can be found in [20]. SIAM Data Mining. arXiv Proceedings, 2022. DOI: 10.48550/arXiv.2204.06321. arXiv: 2204.06321 [math.DS]. - [45] Mustafa Hajij, Elizabeth Munch, and Paul Rosen. "Fast and Scalable Complex Network Descriptor Using PageRank and Persistent Homology". In: 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). Feb. 12, 2020, pp. 110–114. DOI: 10.1109/IDSTA50958.2020.9264141. arXiv: 2002.05158 [cs.CG]. - [46] Daniel H. Chitwood, Mitchell Eithun, Elizabeth Munch, and Tim Ophelders. "Topological Mapper for 3D Volumetric Images". In: *ISMM 2019: Mathematical Morphology and Its Applications to Signal and Image Processing*. Ed. by Bernhard Burgeth, Andreas Kleefeld, Benoît Naegel, Nicolas Passat, and Benjamin Perret. Springer International Publishing, 2019, pp. 84–95. DOI: 10.1007/978-3-030-20867-7_7. - [47] Sarah Tymochko, Elizabeth Munch, and Firas A. Khasawneh. "Adaptive Partitioning for Template Functions on Persistence Diagrams". In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (2019). Special session acceptance rate: 43%. DOI: 10.1109/ICMLA.2019.00202. arXiv: 1910.08506. - [48] Melih C. Yesilli, Sarah Tymochko, Firas A. Khasawneh, and Elizabeth Munch. "Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector". In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (2019). Special session acceptance rate: 43%. DOI: 10.1109/ICMLA.2019.00200. arXiv: 1910.12359. - [49] Firas A. Khasawneh, Elizabeth Munch, and Jose A. Perea. "Chatter Classification in Turning Using Machine Learning and Topological Data Analysis". In: 14th IFAC Workshop on Time Delay Systems TDS 2018: Budapest, Hungary, 28–30 June 2018. Ed. by Tamas Insperger. Vol. 51. 14. 2018, pp. 195–200. DOI: 10.1016/j.ifacol.2018.07.222. arXiv: 1804.02261. - [50] David Rouse, Adam Watkins, David Porter, John Harer, Paul Bendich, Nate Strawn, Elizabeth Munch, Jonathan DeSena, Jesse Clarke, Jeffrey Gilbert, Peter Chin, and Andrew Newman. "Feature-aided multiple hypothesis tracking using topological and statistical behavior classifiers". In: Proc. SPIE. Vol. 9474. 2015, pp. 94740L-94740L-12. DOI: 10.1117/12.2179555. - [51] Firas A. Khasawneh and Elizabeth Munch. "Exploring equilibria in stochastic delay differential equations using persistent homology". In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 17-20, 2014, Buffalo, NY, USA. 2014. DOI: 10.1115/DETC2014-35655. - [52] Firas A. Khasawneh and Elizabeth Munch. "Stability Determiniation in Turning using Persistent Homology and Time Series Analysis". In: *Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition, Montreal, Canada.* 2014. DOI: 10.1115/IMECE2014-40221. # **Book Chapters** - [53] Prithwish Basu, Imdat As, and Elizabeth Munch. "Generating new architectural designs using topological AI". In: *The Routledge Companion to Artificial Intelligence in Architecture*. Taylor Francis, 2021. - [54] Elizabeth Munch and Anastasios Stefanou. "The ℓ[∞]-Cophenetic Metric for Phylogenetic Trees As an Interleaving Distance". In: Research in Data Science. Association for Women in Mathematics Series.
Springer International Publishing, 2019, pp. 109–127. DOI: 10.1007/978-3-030-11566-1_5. arXiv: 1803.07609. - [55] Firas A. Khasawneh and Elizabeth Munch. "Utilizing Topological Data Analysis for Studying Signals of Time-Delay Systems". In: *Time Delay Systems: Theory, Numerics, Applications, and Experiments*. Ed. by Tamás Insperger, Tulga Ersal, and Gábor Orosz. Cham: Springer International Publishing, 2017, pp. 93–106. DOI: 10.1007/978-3-319-53426-8_7. #### **Published Datasets** - [56] Erik Amezquita, Michelle Quigley, Patrick Brown, Elizabeth Munch, and Daniel Chitwood. *The shape of kernels and cracks, in a nutshell.* en. 2023. DOI: 10.5061/DRYAD.NGF1VHJ09. - [57] Erik Amezquita, Michelle Quigley, Tim Ophelders, Danelle Seymour, Elizabeth Munch, and Daniel Chitwood. The shape of aroma: X-ray CT scans of citrus fruits, their separate tissues, and their individual oil glands. en. 2022. DOI: 10.5061/DRYAD.34TMPG4N6. - [58] Erik Amézquita, Michelle Quigley, Tim Ophelders, Jacob Landis, Daniel Koenig, Elizabeth Munch, and Daniel Chitwood. X-Ray CT scans of barley panicles and their individual seeds from the Composite Cross II experiment. en. 2021. DOI: 10.5061/DRYAD.RXWDBRV93. - [59] Daniel H. Chitwood, Mitchell Eithun, Daniel Koenig, Jacob Landis, Elizabeth Munch, and Tim Ophelders. "CT Scan of Barley (Hordeum vulgare L.)" In: (Mar. 2019). DOI: 10.6084/m9.figshare. 7590833. - [60] Mitchell Eithun, James Larson, Daniel H. Chitwood, Gregory Lang, and Elizabeth Munch. "MRI Scan of Sweet Cherry (Prunus avium L.)" In: (Dec. 2018). DOI: 10.6084/m9.figshare.7409843.v1. #### arXiv Purgatory This section includes papers which were submitted to arXiv, but for a variety of reasons, I am not actively trying to get published in a more standard venue. - [61] Magnus Bakke Botnan, Justin Curry, and Elizabeth Munch. "A Relative Theory of Interleavings". In: (Apr. 29, 2020). arXiv: 2004.14286 [math.CT]. - [62] Kayla Makela, Tim Ophelders, Michelle Quigley, Elizabeth Munch, Daniel Chitwood, and Asia Dowtin. "Automatic Tree Ring Detection using Jacobi Sets". In: (Oct. 17, 2020). arXiv: 2010.08691 [cs.CV]. - [63] Jesse J. Berwald, Joel M. Gottlieb, and Elizabeth Munch. "Computing Wasserstein Distance for Persistence Diagrams on a Quantum Computer". In: (Sept. 17, 2018). arXiv: 1809.06433 [cs.CG, cs.ET, quant-ph]. # Other Published Work - [64] Elizabeth Munch. "Pathways to a Career Outside of the Academic Silo". In: AMS Notices 69.7 (2022). DOI: 10.1090/noti2519. - [65] Vin de Silva, Elizabeth Munch, and Anastasios Stefanou. "A Hom-Tree Lower Bound for the Reeb Graph Interleaving Distance". In: Extended Abstract, Fall Workshop on Computational Geometry (2015). - [66] Elizabeth Munch and Bei Wang. "Reeb Space Approximations with Guarantees". In: Extended Abstract, Fall Workshop on Computational Geometry (2015). - [67] Elizabeth Munch. "Applications of Persistent Homology to Time Varying Systems". PhD thesis. Duke University, 2013. - [68] Elizabeth Munch, Ian Gilby, Susan Alberts, Anne Pusey, and John Harer. "Using Vineyards to Verify results of an Agent-Based Model of Primate Group Fission and Fusion". In: YRF'12: Young Researchers Forum at CG Week. Chapel Hill, NC, 2012. #### GRANTS: FUNDED AND RECOMMENDED FOR FUNDING # CAREER: Reeb graph learning: Classification, Clustering, and Embedding of Graphical Signatures • NSF CCF-2142713: \$507,462 • May 2022 - May 2027 • Role: PI # Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison • NSF CCF-2106578: \$409,945 • Jun 2021 - May 2025 • Role: Principal Investigator • Collaborative with Erin Chambers, Computer Science, St. Louis University; Carola Wenk, Computer Science, Tulane University # AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis • NSF CCF-1907591: \$246,596 • Oct 2019 - Sept 2024 • Role: Principal Investigator • Collaborative with Erin Chambers, (PI: CCF-1907612) Computer Science, St. Louis University # Zigzag Persistent Homology and Network Methods for Topological Signal Processing • Air Force Office of Scientific Research, \$375,000 • Oct 2021 - Sep 2024 • Role: Co-PI • Collaborative with Firas Khasawneh (PI), Mechanical Engineering, MSU # Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences • NSF IOS-2310355: \$639,998 • June 2023 - June 2027 • Role: co-PI • Collaborative with - Dan Chitwood (PI MSU) Horticulture/CMSE, MSU - Robert VanBuren (coPI MSU) Horticulture, MSU - Aman Husbands (PI: IOS-2310356) Biology, University of Pennsylvania - Arjun Krishnan (PI: IOS-2310357) Biomedical Informatics, Center for Health AI, Univ. of Colorado Anschutz # Role of transport processes in formation of optimal microbial habitats and the root-microbesoil carbon accrual continuum • NSF DEB-1904267: \$624,995 Sept 2019 - Aug 2024 • Role: Co-PI • Collaborative with - Alexandra Kravchenko (PI), Dept of Plant, Soil, and Microbial Sciences, MSU - Daniel Chitwood (Co-PI), Depts of Horticulture and CMSE, MSU - Lisa Tiemann (Co-PI), Dept of Plant, Soil, and Microbial Sciences, MSU - Andrey Guber (Co-PI), Dept of Plant, Soil, and Microbial Sciences, MSU # NRT-AI-HDR: Harnessing the data revolution (HDR) to enable predictive multi-scale modeling across STEM • NSF DGE-2152014, \$2,968,065 - Mar 2022 Feb 2027 - Role: Co-PI - Led by Daniel Appelö. Other Co-PIs: Yingda Cheng, Matthew Hirn, Keith Promislow, and Brian O'Shea. ### GRANTS: COMPLETED PROJECTS # Collaborative Research: A Unified Framework for the Investigation of Time Series Using Topological Data Analysis - NSF CMMI-1562012/1800466: (UAlbany/MSU) \$178,736 * - April 2016 Mar 2020 - Role: Principal Investigator - Collaborative with Firas Khasawneh, (PI: CMMI-1562459/1759823) Mechanical Eng., MSU # CDS&E: Collaborative Research: Machine Learning on Dynamical Systems via Topological Features - NSF DMS-1622320/1800446: (UAlbany/MSU) \$101,672 - Sept 2016 Aug 2019 - Role: Principal Investigator - Collaborative with - Firas Khasawneh, (PI: DMS-1622293/1759824) Mechanical Eng., MSU - José Perea, (PI: DMS-1622301) Depts. of Math, & CMSE, MSU # Kaleidoscope: Turning System Design Inside-Out - DARPA - Aug 2016-July 2017 - Role: Technical POC - Collaborative with Raytheon BBN Technologies Corp., Boston, MA ^{*}Double grant numbers caused by transfer of grants to MSU. #### INVITED SPEAKER Talk titles with hyperlinks have recordings or supplementary material available. - 133. Bounding the Interleaving Distance for Mapper Graphs with a Loss Function. Workshop on Applied and Combinatorial Topology, Schloss Dagstuhl, Wadern, Germany, Feb 27, 2024. - 132. Topological Data Analysis for Shape Comparison. CSCS Colloquium, University of Michigan, Ann Arbor, MI, Feb 8, 2024. - 131. Topological Data Analysis for Shape Comparison. Tufts Colloquium, Tufts University, Boston, MA, Feb 1, 2024. - 130. Topological Data Analysis for Shape Comparison. ACMS Colloquium, Notre Dame, South Bend, IN, Jan 11, 2024. - 129. Comparing Embedded Shapes Using Topological Summaries. Plenary Lecture, SIAM Great Lakes Meeting, Michigan State University, East Lansing, MI, Oct 14, 2023. - 128. Bounding the Interleaving Distance for Geometric Graphs with a Loss Function. Computational Persistence Workshop, Purdue, West Lafayette, IN, Sep 27, 2023. - 127. Analyzing Network Representations of Dynamical Systems Using Persistent Homology. ICIAM, Tokyo, Japan (Virtual), Aug 25, 2023. - 126. Bounding the Interleaving Distance for Geometric Graphs with a Loss Function. TDA Week, Kyoto University, Kyoto, Japan, Aug 1, 2023. - 125. Making space and studying shape in a non-traditional academic setting. MSU ACRES REU, East Lansing, MI, June 7, 2023. - 124. The Directional Transform, or how to look at your data from every direction at once. MSU Topology REU, East Lansing, MI, June 2, 2023. - 123. Combining network analysis and persistent homology for classifying behavior of time series. IMSI Randomness in Topology and its Applications, March 22, 2023. - 122. Graph Comparison using the Interleaving Distance. UCLA Math Department Colloquium, Feb 23, 2023. - 121. Combining network analysis and persistent homology for classifying behavior of time series. One World MINDS Seminar, Virtual, Feb 9, 2023. - 120. The Directional Transform, or how to look at your data from every direction at once. Workshop on Computational Topology and Quantum Computing, Kigali, Rwanda (virtual), Feb 8, 2023. - 119. The Directional Transform, or how to look at your data from every direction at once. MSU Undergraduate Math Club, Michigan State University, Nov 29, 2022. - 118. The Directional Transform, or how to look at your data from every direction at once. Data-oriented Mathematical & Statistical Sciences (DoMSS) Seminar, Arizona State University, Virtual, Oct 17, 2022. - 117. The Directional Transform, or how to look at your data from every direction at once. AATRN STMS Joint Seminar Series, Virtual, Oct 14, 2022. - 116. Graph Classification Using the Interleaving Distance. SIAM-MDS, San Diego, CA, Sep 29, 2022. - 115. Crafting Topological Features. BIRS Deep Exploration of non-Euclidean Data with Geometric and Topological Representation Learning, Kelowna, BC, Canada, July 12, 2022. - 114. The many faces of the interleaving distance. Plenary talk, ATMCS 10, Oxford, UK, June 23, 2022. - 113. Making space and studying shape in a non-traditional academic setting. Keynote Address, WiDS Iowa, Virtual, Apr 21, 2022. - 112. The Interleaving Distance for Reeb Graphs. Math Dept Colloquium, University of Utah, Salt Lake City, UT, Apr 7, 2022. - 111. The Shape of Data. Keynote Address, NAPPN Annual Conference, University of Georgia, Athens, GA, Twosday, Feb 22, 2022. - 110. Combining network analysis and persistent homology for classifying behavior of time series. Dynamics Days, Online due to COVID-19, Jan 7,
2022. - 109. The Truncated Interleaving Distance for Reeb Graphs. Quivers Seminar, University of Iowa, Online due to COVID-19, November 15, 2021. - 108. On the inter-level-set persistence bottleneck distance for Reeb graphs. Computational Persistence Workshop, Purdue, Online due to COVID-19, November 5, 2021. - 107. The Truncated Interleaving Distance for Reeb Graphs. SIAM Conference on Applied Algebraic Geometry, Online due to COVID-19, August 18, 2021. - 106. The Interleaving Distance for Graphical Signatures. Mathematical Congress of the Americas, Online due to COVID-19, July 16, 2021. - 105. Measuring the Shape of Hurricanes. MSU SURIEM REU, Online due to COVID-19, July 7, 2021. - 104. Metrics for Graphical Signatures. Topological Ideas in Applications, Thematic Einstein Semester on Geometric and Topological Structure of Materials, TU Berlin, Online due to COVID-19, June 24, 2021. - 103. The Directional Transform: From Theory to Practice. Workshop on Computational Topology at SoCG, Gather town, June 10, 2021. - 102. A family of metrics from the truncated smoothing of Reeb graphs. Symposium on Computational Geometry (SoCG) Main Session, Gather town, June 7, 2021. - 101. Quantifying the shape of time series with TDA and network-based methods. AI and Topology Track, EPFL Applied Machine Learning Days, Online due to COVID-19, May 10, 2021. - 100. Combining network analysis and persistent homology for classifying behavior of time series. Applied Mathematics and Complex Systems Seminar, University of Western Australia, Online due to COVID-19, May 6, 2021. - 99. The Truncated Interleaving Distance for Reeb Graphs. Topological Data Analysis Workshop, IMSI, Online due to COVID-19, April 27, 2021. - 98. Utilizing Persistent Homology for Classifying Behavior of Time Series. Computational Topology Class, University of Utah, Online due to COVID-19, April 22, 2021. - 97. Measuring the Shape of Hurricanes. MSU Undergraduate Math Club, Online due to COVID-19, April 6, 2021. - 96. Combining network analysis and persistent homology for classifying behavior of time series. Applied Math Colloquium, University of Arizona, Online due to COVID-19, March 12, 2021. - 95. Averaging Merge Trees. EPFL Applied Topology Seminar, Online due to COVID-19, March 9, 2021. - 94. The Truncated Interleaving Distance for Reeb Graphs. Joint Mathematics Meetings, Online due to COVID-19, Jan 9, 2021. - 93. Python Tutorial on Topological Data Analysis (TDA). AMS Short Course on Mathematical and Computational Methods for Complex Social Systems, Joint Mathematics Meetings, Online due to COVID-19, Jan 5, 2021. - 92. Persistent homology of complex networks for dynamic state detection in time series. Topological Data Analysis and Beyond Workshop, Neurips 2020, Online due to COVID-19, Dec 11, 2020. - 91. The Truncated Interleaving Distance for Reeb Graphs. TGDA Seminar, Ohio State University, Online due to COVID-19, Nov 17, 2020. - 90. Combining network analysis and persistent homology for classifying behavior of time series. CMSE Brownbag Seminar, MSU, Nov 13, 2020. - 89. Combining network analysis and persistent homology for classifying behavior of time series. Virtual Mathematics Colloquium, Clarkson University, Online due to COVID-19, Oct 19, 2020. - 88. Combining network analysis and persistent homology for classifying behavior of time series. Second Symposium on Machine Learning and Dynamical Systems, Fields Institute, Online due to COVID-19, Sep 29, 2020. - 87. The Truncated Interleaving Distance for Reeb Graphs. GEOTOP-A Online Seminar, Sep 18, 2020. - 86. Convergence of Mapper Graphs. MSU TDA Seminar, East Lansing, MI, Aug 6, 2020. - 85. Featurization of Persistence Diagrams using Template Functions for Machine Learning Tasks. Diff CVML CVPR Keynote, Online due to COVID-19., June 29, 2020. - 84. Topological Data Analysis for Quantifying Plant Morphology. SIAM MDS, Online due to COVID-19., June 2, 2020. - 83. Drawing Time-Varying Reeb Graphs. MSU AMS/AWM Grad Student Seminar, Mar 9, 2020. - 82. Applications of TDA: From Reeb Graphs to Diagrams, From Time Series to Plant Morphology. MSU TDA Seminar, East Lansing, MI, Mar 9, 2020. - 81. Featurization of Persistence Diagrams using Template Functions for Machine Learning Tasks. Applied Algebraic Topology Research Network (AATRN), Online Seminar, Jan 29, 2020. - 80. Featurization of Persistence Diagrams using Template Functions for Machine Learning Tasks. Joint Math Meetings (JMM), Denver, CO, Jan 17, 2020. - 79. Featurization of Persistence Diagrams using Template Functions for Machine Learning Tasks. Canadian Mathematical Society Winter Meeting, Toronto, Canada, Dec 7, 2019. - 78. Measuring the Shape of Data: The Shape of Hurricanes. Big Data Colloquium, Grand Valley State University, Allendale, MI, Nov 22, 2019. - 77. Featurization of Persistence Diagrams for Classifying Attractors. SIAM Dynamical Systems, Snow-bird, Utah, May 22, 2019. - 76. Featurization of persistence diagrams using template functions for machine learning tasks. SIAM Great Lakes Sectional Meeting, University of Michigan, Ann Arbor, MI, April 27, 2019. - 75. Utilizing persistent homology for classifying behavior of time series. Workshop on Data Driven Dynamics: Algebraic Topology, Combinatorics and Analysis, CRM, Montreal, Canada, April 18, 2019. - 74. The Interleaving Distance for a Category with a Flow. MSU AMS/AWM Grad Student Seminar, Feb 7, 2019. - 73. The Interleaving Distance for a Category with a Flow. Upstate New York Topology Seminar, Albany, NY, Nov 10, 2018. - 72. Quantum Computation in a Topological Data Analysis Pipeline. 2018 D-Wave Qubits North America, Knoxville, TN, Sep 25, 2018. - 71. Interleavings for categories with a flow and the hom-tree lower bound. BIRS-CMO Workshop on Multiparameter Persistent Homology, Oaxaca, Mexico, Aug 9, 2018. - 70. Topological Data Analysis. Summer Undergraduate Research Institute in Experimental Mathematics (SURIEM), MSU, East Lansing, MI, June 21, 2018. - 69. Topological Data Analysis. iCER ACRES REU, MSU, East Lansing, MI, June 13, 2018. - 68. Topological Data Analysis for Time Series Analysis. Abel Symposium, Geiranger, Norway, June 6, 2018. - 67. Reeb graphs, Mapper graphs, and Metrics. IMA Special Workshop: Bridging Statistics and Sheaves, Minneapolis, MN, May 21, 2018. - 66. Approximating Continuous Functions on Persistence Diagrams for Machine Learning Tasks. TRIPODS Seminar: Geometry and Topology of Data, ICERM, Brown University, Providence, RI, December 13, 2017. - 65. Quantifying and Comparing Shape in Data. Colloquium, Dept of Mathematics, University of Michigan at Dearborn, Dearborn, MI, December 6, 2017. - 64. Approximating Continuous Functions on Persistence Diagrams for Machine Learning Tasks. Geometry and Topology Seminar, Math Dept, MSU, East Lansing, MI, November 16, 2017. - 63. What is Topological Data Analysis. CMSE Brown-bag Lecture Series, MSU, East Lansing, MI, October 17, 2017. - 62. Applications of Persistence to Time Series Analysis. SIAM Central States Section 2017 Meeting, Colorado State University, Fort Collins, CO, September 30, 2017. - 61. Introduction to Categorical Approaches in Topological Data Analysis II. Topology, Computation and Data Analysis, Schloss Dagstuhl, Wadern, Germany, July 17, 2017. - 60. Applications of Persistence to Time Series Analysis. SIAM Conference on Dynamical Systems, Snow-bird, Utah, May 23, 2017. - 59. Reeb graphs, Mapper graphs, and Metrics. 47th Annual John H. Barrett Memorial Lectures, University of Tennessee Knoxville, TN, Mar 2, 2017. - 58. The Convergence of Mapper. AWM Research Symposium, UCLA, Los Angeles, CA, Apr 8, 2017. - 57. The Convergence of Mapper. Brown University, Providence, RI, Mar 9, 2017. - 56. A Topological Approach to Data Science. Dept. of Mathematics, Montana State University, Bozeman, MT, Feb 13, 2017. - 55. A Topological Approach to Data Science. Dept. of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, Jan 11, 2017. - 54. The interleaving distance for posets. Joint Mathematics Meetings, Atlanta, GA, Jan 4, 2017. - 53. The Convergence of Mapper. New York Applied Topology Meetings, Columbia University, New York, NY, Dec 9, 2016. - 52. The interleaving distance for posets. Union College Mathematics Conference, Schenectady, NY, Dec 3, 2016. - 51. The Reeb graph interleaving distance. Computer Science Seminar, St. Louis University, Oct 12, 2016. - 50. Utilizing Topological Data Analysis to Detect Periodicity. International Workshop on Topological Data Analysis in Biomedicine at ACM-BCB, Seattle, WA, Oct 2, 2016. - 49. The interleaving distance. Geometry and Topology Seminar, Math Department, University at Buffalo, Buffalo, NY, Sep 23, 2016. - 48. Applications of Persistence to Time Series Analysis. Topology, Geometry, and Data Analysis Conference (TGDA), Ohio State University, Columbus, OH, May 20, 2016. - 47. Topological Data Analysis. Junior STEM Idea Exchange (JUSIE): Lightning event, Albany, NY, May 10, 2016. - 46. What Does it Mean for Data to Have Shape?. Workshop on the Shape of Educational Data, Fairfax, VA, April 7, 2016. - 45. The Reeb Graph Interleaving Distance and its Application to Data Analysis. Combinatorics Seminar, SUNY Binghamton, Binghamton, NY, Mar 15, 2016. - 44. Topological Data Analysis and its Application to Atmospheric Science Data. Dept of Atmospheric and Environmental Sciences Colloquium, UAlbany, Albany, NY, Feb 15, 2016. - 43. Topological Data Analysis. Math Department Student Seminar, Union College, Schenectady, NY, Jan 19, 2016. - 42. Applied Category Theory and the Reeb Graph Interleaving Distance. Geometry and Topology Seminar, NCSU, Raleigh, NC, Jan 13, 2016. - 41. Complexity of the Reeb Graph Interleaving Distance. CS Theory Seminar, NCSU, Raleigh, NC, Jan 11, 2016. - 40. Reeb Graph Approximation with Guarantees. Joint Mathematics Meetings, Seattle, WA, Jan 9, 2016. - 39. Reeb Graph Approximation with Guarantees.
Fall Workshop on Computational Geometry (FWCG), Buffalo, NY, Oct 23, 2015. - 38. The Reeb Graph Interleaving Distance . UAlbany Algebra/Topology Seminar, Sep 3 (Part I) and Sep 10 (Part II), 2015. - 37. A New Metric for \mathbb{R} -graph Comparison. AFRL Annual Applied Topology Workshop, Rome, NY, Aug 7, 2015. - 36. Demo: Using Perseus to Compute Persistent Homology. UAlbany Applied Topology Reading Group, Aug 6, 2015. - 35. The Interleaving Distance. CG Week, Symposium on Computational Geometry (SoCG), Eindhoven, Netherlands, June 25, 2015. - 34. Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs. Symposium on Computational Geometry (SoCG), Eindhoven, Netherlands, June 24, 2015. - 33. Using Topology to Understand Big Data. Junior STEM Idea Exchange (JUSIE), University at Albany SUNY, Mar 25, 2015. - 32. Strong Equivalence of Reeb Graph Metrics. Invited Lecture, TU Munich, Munich, Germany, Mar 17, 2015. - 31. The Cosheaf-Less Reeb Graph Interleaving Distance. Seminar on Computational Geometry, Schloss Dagstuhl, Wadern, Germany, Mar 12, 2015. - 30. The Interleaving Distance for Reeb Graphs. Applied Algebraic Topology Research Network Online Seminar, Feb 25, 2015. - 29. Using Topology to Understand Big Data. Women in Science and Engineering (WISH) Lunch, University at Albany, Albany, NY, Jan 15, 2015. - 28. Towards Predicting and Preventing Machine Chatter Using Persistent Homology. Invited lecture, Workshop on Topology: Identifying Order in Complex System, Rutgers, New Brunswick, NJ, Oct 18, 2014. - 27. Using Topology to Understand Big Data. Invited lecture, Modern Math Workshop, Los Angeles, CA, Oct 16, 2014. - 26. Interleavings of Reeb Graphs. Invited Lecture, AIM Workshop on Generalized Persistence and Applications, Sept 18, 2014. - 25. Interleavings of Reeb Graphs. Invited Lecture, ATMCS 6, Vancouver, Canada, May 29, 2014. - 24. Topological Data Analysis: Persistent Homology and Applications. Invited Lecture, Systems Information Learning Optimization (SILO), University of Wisconsin Madison, Madison, WI, April 23, 2014. - 23. A Distance Measure on Reeb Graphs. Invited Lecture, Topology, Geometry and Data Seminar, Ohio State University, Columbus, OH, April 11, 2014. - 22. Using Persistence to Explore Equilibria of Delay Equations. Invited Lecture, Spring Topology and Dynamics Conference, University of Richmond, Richmond, VA, March 14, 2014. - 21. Categorification of Reeb Graphs. Invited Lecture, Workshop on Topological Systems: Communication, Sensing, and Actuation, IMA, Minneapolis, MN, March 6, 2014. - 20. Categorification of Reeb Graphs. SAMSI Workshop, LDHD: Topological Data Analysis, Durham, NC, February 5, 2014. - 19. Extending Statistical Methods to Computational Topology. SIAM Minisymposium on Applied and Computational Geometry, JMM, Baltimore, MD, January 17, 2014. - 18. A Statistical Approach for Improving Topological Data Analysis. University of Rochester, Rochester, NY, January 10, 2014. - 17. Categorification of Reeb Graphs. Topology Seminar, Tulane University, New Orleans, LA, November 5, 2013. - 16. Categorification of Reeb Graphs. IMA Postdoc Seminar, University of Minnesota, Minneapolis, MN, October 22, 2013. - 15. A Continuous Mean for Finite Sets of Persistence Diagrams. Invited Lecture, Workshop: Topological Data Analysis, IMA, University of Minnesota, Minneapolis, MN, October 10, 2013. - 14. A Continuous Mean for Distributions of Persistence Diagrams. Invited Lecture, SIAM Conference on Applied Algebraic Geometry, Fort Collins, CO, August 2, 2013. - 13. An Introduction to Topological Data Analysis. Invited Lecture, SUNYIT, Utica, NY, June 11, 2013. - 12. Applications of Persistent Homology to Time Varying Systems. PhD Defense, Duke University, March 28, 2013. - 11. Using Persistent Homology to Analyze Behavior in Dynamic Point Clouds. SIAM Student Chapter Lecture Series, Colorado State University, Fort Collins, CO, November 5, 2012. - 10. Using Persistent Homology to Analyze Dynamic Point Clouds. Data Research Training Grant Seminar, Duke University, Durham, NC, October 22, 2012. - 9. An Intro to Persistent Homology and Some Applications. Graduate/Faculty Seminar, Duke University, Durham, NC, September 7, 2012. - 8. Metrics on Vineyards. Computational Geometry Week, Chapel Hill, NC, June 20, 2012. - 7. Primates and Vineyards. Duke University Math Slam, Duke University, Durham, NC, March 23, 2012. - 6. Utilizing Ideas from Persistent Homology to Compute Probabilistic Sensor Network Coverage. Algebra/Combinatorics Seminar, NC State University, Raleigh, NC, January 13, 2012. - 5. Applied Topology: Basic Ideas and a Mess of Applications. Graduate/Faculty Seminar, Duke University, Durham, NC, October 14, 2011. - 4. Using Persistent Homology to Compute Probabilistic Failure of a Sensor Network. SIAM Conference on Applied Algebraic Geometry, Raleigh, NC, October 6, 2011. - 3. Computing Probabilistic Sensor Network Coverage via Algorithms Utilizing Persistent Homology. Geometry and Topology Reading Group, Institute of Science and Technology, Klosterneuburg, Austria, June 20, 2011. - 2. Computing Probabilistic Sensor Network Coverage via Algorithms Utilizing Persistent Homology. Computational Geometry Seminar, UNC Chapel Hill, Chapel Hill, NC, February 3, 2011. - 1. Failure Filtrations and Coverage of Fenced Sensor Networks. Graduate/Faculty Seminar, Duke University, November 19, 2010. # TEACHING EXPERIENCE | Course | ${f Title}$ | Institution | Semesters | Eval. | |--------------|---|-------------|--|---------------------| | CMSE 201 | Intro to Computational Modeling and
Data Analysis | MSU | Spring, 2018 | 1.81* | | CMSE 381 | Fundamentals of Data Science
Methods | MSU | Spring, 2022
Fall, 2022
Fall, 2023 | 1.74*
1.45* | | CMSE 801 | Intro to Computational Modeling | MSU | Spring, 2020 | 1.36* | | CMSE 802 | Methods Computational Modeling | MSU | Spring, 2021 | 1.12* | | CMSE 491/890 | Topological Analysis of Large
Datasets | MSU | Fall, 2017
Fall, 2021 | 1.75/1.18*
1.25* | | MTH 132 | Calculus I | MSU | Fall, 2020 | $1.52^{*\dagger}$ | | MTH 481 | Discrete Mathematics I | MSU | Fall, 2018 | 1.42* | | MTH 994 | Topics: The Interleaving Distance | MSU | Spring, 2023 | 1.00* | | AMAT 840 | Applied Topology | UAlbany | Spring, 2015 | 4.50 | | AMAT 587 | Graph Theory | UAlbany | Fall, 2015 | 5.00 | | AMAT 540B | Topology II | UAlbany | Spring, 2017 | 4.60 | | AMAT 502 | Modern Computing for
Mathematicians | UAlbany | Spring, 2016 | 5.00 | | AMAT 363 | | | Fall, 2014 | 4.96 | | | Statistics | UAlbany | Fall, 2015 | 4.87 | | | | | Spring, 2016 | 4.84 | | | | | Spring, 2017 | 4.67 | | TIP | Mobius Strips, Klein Bottles, and
Fractals: The Mathematics of
Distortion | Duke TIP | July, 2012 | 4.82 | | Math 32L | Laboratory Calculus II | Duke | Spring, 2011 | 4.00 | | Math 31L | Laboratory Calculus I | Duke | Fall, 2009 | 3.00 | | Math 25L | Laboratory Calculus and Functions I | Duke | Fall, 2008 | | ^{*}Note that while all evaluation scores are provided out of 5, MSU defines a score of 1 to be the best, while all other scores are based on 5 as the best. Those evaluations using a best score of 1 are marked with an asterisk. \dagger Aggregated score. Due to Covid-19, course was taught online, with 337 official students of record across 13 sections. # CURRENT GROUP MEMBERS | Graduate Students | | |--|----------------------| | Sarah McGuire, PhD Student, MSU CMSE | Sep 2019 - Present | | Xinyi (Elena) Wang, PhD Student, MSU CMSE | Sep 2020 - Present | | Rachel Roca, PhD Student, MSU CMSE Jointly advised with Danny Caballero | Sep 2021 - Present | | David Muñoz, PhD Student, MSU CMSE | Jan 2022 - Present | | Astrid Olave, PhD Student, MSU Math | Jan 2022 - Present | | Ishika Ghosh, PhD Student, MSU CMSE | Aug 2022 - Present | | Danielle Barnes, PhD Student, MSU CMSE | June 2022 - Present | | Postdocs | | | Sarah Percival, Postdoc, MSU BMB Jointly advised with Dan Chitwood, Beronda Montgomery, Arjun Krishna and Aman Husbands (OSU) | Sep 2021 - Present | | Under graduates | | | Denis Selyuzhitsky, Undergraduate Student, UG Research Assistant, MSU | Sep 2022 - Present | | Ray Hasan, Undergraduate Student, Professorial Assistant, MSU | Sep 2023 - Present | | FORMER MEMBERS AND OTHER PERSONNEL | | | Graduate Students | | | Anastasios Stefanou, PhD student, UAlbany Math Jointly advised with Justin Curry First job post-PhD: Postdoc, Ohio State University | Oct 2015 - Aug 2018 | | Sarah Tymochko, PhD Student, MSU CMSE
First job post-PhD: Postdoc, UCLA | Sept 2017 - May 2022 | | Erik Amézquita, PhD Student, MSU CMSE Jointly advised with Dan Chitwood First job post-PhD: Postdoc, Plant Biology, University of Missouri | Sep 2018 - May 2023 | | Christopher Potvin, PhD Student, MSU Math
First job post-PhD: Asst Prof, Math, Warren Wilson College | Jan 2021 - May 2023 | | İsmail Güzel, Visiting Graduate Student from İTÜ İstanbul, Türkiye | Sep 2022 - Aug 2023 | | Christopher Sukhu, MS Student, MSU CMSE | May 2017 - May 2019 | | Mitchell Eithun, MS Student, MSU CMSE Jointly advised with Dan Chitwood | Jan 2018 - Aug 2019 | | Postdocs | | | Sourabh Palande, Postdoc, MSU CMSE Jointly advised with Dan Chitwood | Sep 2020 - May 2023 | | Shelley Kandola, Postdoc, MSU Math | Sep 2019 - July 2021 | | Tim Ophelders, Postdoc, MSU CMSE Jointly advised with Dan Chitwood | Sep 2018 - Aug 2020 | | | | | Sep 2018 - Sep 2020 | |----------------------| | | | 2022 - Present | | 2022 - Present | | Oct 2020 - Present | | March 2021 - Present | | Nov 2021 - Present | | Sept 2023 - Present | | Jan 2024 - Present | | Jan 2024 - Present | | Graduated July 2023 | | Graduated May 2022 | | Graduated Aug 2021 | |
Graduated Aug 2021 | | Graduated July 2018 | | Graduated May 2020 | | Graduated May 2022 | | Graduated May 2022 | | Graduated May 2022 | | | | Sep 2022 - May 2023 | | Sep 2022 - May 2023 | | Sep 2020 - May 2022 | | Summer 2021 | | Summer 2020 | | Jan 2018 - Aug 2020 | | Sep 2017 - May 2019 | | Summer 2018 | | May 2016 - Aug 2017 | | | Sep 2018 - Sep 2020 Michelle Quigley, Postdoc, MSU Horticulture Akanksha Atrey, Undergraduate Student, UAlbanyBill Dong, High School Student, UAlbany Jan 2015 - June 2016 Jun 2015 - Aug 2016 # SERVICE | Departmental and University Service | | |---|----------------------| | MSU TDA Seminar, Creator and Co-Organizer | Mar 2020 - Present | | CMSE Advisory Committee (AdCom), MSU | | | Elected Member | Sept 2020 - Present | | Secretary | Sept 2017 - Aug 2018 | | CMSE Graduate Curriculum Committee, MSU | 1 0 | | Chair | Sept 2023 - Present | | College of Engineering Graduate Studies Committee, MSU | Sept 2020 Tresent | | CMSE Representative | Sept 2023 - Present | | CMSE Representative | Sept 2018 - Aug 2020 | | Hiring Committees, MSU | Dept 2010 - Aug 2020 | | CMSE/Math Joint Search | June 2022 progent | | , | June 2023 - present | | CMSE 1855 Data Science | Mar 2022 - May 2023 | | CMSE TT Data Science | Sept 2021- Feb 2022 | | Math Undergraduate Committee, MSU | Sept 2021- Feb 2022 | | CMSE Graduate Studies Committee, MSU | | | Chair | Aug 2018 - Aug 2020 | | Member | Aug 2020 - Aug 2021 | | MSU College of Natural Science Panel Discussion: | Mar 14, 2023 | | Winning Strategies for NSF CAREER Proposals | | | Member of CMSE Awards Committee, MSU | Sept 2019 - Aug 2020 | | CNS Strategic Plan Integration Committee, MSU | Jan 2020 - Dec 2020 | | Panel on Academic Careers for Engineering Graduate Students, MSU | Nov 26, 2019 | | Member, Executive Committee for PlantBio NSF-NRT Grant, MSU | Sept 2018 - Aug 2019 | | Math Dept. Graduate Committee, UAlbany | Sept 2016 - Aug 2017 | | Math Dept Representative, UAlbany Undergraduate Research | Mar 2016 | | Information Session and Forum | 11101 =010 | | Faculty Speaker, UAlbany Math Department Graduation Ceremony | May 2015 | | Organizer, UAlbany Reading Group on Applied Topology | Summer 2015 | | UAlbany Math Dept Colloquium Committee | Sept 2014-Aug 2017 | | Organizer for the IMA Postdoc Seminar | • | | | Sept 2013-Aug 2014 | | President, Noetherian Ring of Duke University | Sept 2012-May 2013 | | Mathbio Seminar Organizer, Duke Math Dept | Spring 2012 | | Project Mentor: Duke Workshop on Applications of Math to | May 16-20, 2011 | | Physiology and Medicine | | | Tea Organizer for Duke Mathematics Dept | Sept 2010 - May 2011 | | Graduate Student Representative for Duke Math Department | Jan 2009 - Dec 2009 | | Professional Service | | | Minitutorial, Topological Signal Processing for Dynamical Systems, SIAM-DS | May 2023 | | Organized with Firas Khasawneh and Max Chumley | 1.130 2020 | | Special Session, Topological Data Analysis with Mapper | SIAM-MDS 2022 | | Organized with Sarah Percival. | DIAMI-MIDD 2022 | | | Mars 2021 | | Organizer, Workshop on Topological Signal Processing at SIAM DS 21 | May 2021 | | Workshop Committee Member, Symposium on Computational Geomtry (SoCG) | | | Program Committee Member, Women+ Data Science Monthly Meetup, MSU | Fall 2020 | | Mentor, National Alliance for Doctoral Studies in the Mathematical Sciences | Fall 2020 - present | | Steering Committee Member, ATMCS | Mar 2017 - present | | Steering Committee Member, Women in Computational Topology | Sep 2016 - present | | Organizer, IMA Workshop: Bridging Statistics and Sheaves | May 2018 | | Community Outreach Jan 2013 Community Outreach Oct 2018 Panelist on Careers in Academia, Women in Science Conference, Notre Dame Interview for The Girls' Angle Bulletin, ISSN 2151-5700 Oct 2015 NYS Master Teacher Program Application Review Committee Sept 2014 Volunteer for FEMMES Capstone Events April 2011, April 2011, April 2011 Editorial Boards & Conference Program Committees 2021-Present Inaugural Editorial Board Member, Computing in Geometry and Topology (CGT) 2021-Present Associate Editor, EPJ Data Science 2024-Present Guest Editor, EPJ Bata Science 2023-Present Guest Editor, EPJ Bata Science 2023-Present Program Committee Member, Symposium on Computational Geometry (SoCQ) 2023 Program Committee Member, "Applications of Topological Data Analysis 2021 Program Committee Member, Fall Workshop on Computational Geometry (SoCQ) 2018 Program Committee Member, Fall Workshop on Computational Geometry (SoCQ) 2014 Scientific Committee, ATMCS7, Torino, Italy 2022 Auruals 2022 Auruals 2022 Aurual 2022 Bulletin of Mathematical Biology 2023 | Organizer for Special Session on Sheaves in TDA at the Joint Math Meetings Organizer, The 4th Annual Minisymposium on Computational Topology, CG Week at the Symposium on Computational Geometry Session Organizer, AWM Research Symposium | Jan 2017
Jun 2015
Apr 2015 | |--|--|---| | Panelist on Careers in Academia, Women in Science Conference, Notre Dame Oct Nov 2015 Interview for The Girls' Angle Bulletin, ISSN 2151-5700 Oct Nov 2015 NYS Master Teacher Program Application Review Committee Sept 2014 Volunteer for FEMMES Capstone Events April 2011, April 2012 Editorial Board & Conference Program Committees Inaugural Editorial Board Member, Computing in Geometry and Topology (CGT) 2021-Present Associate Editor, El PJ Data Science 2023-Present Guest Editor, La Mathematica 2024-Present Advances in Applied and Computational Topology, WinCompTop Special Issue 2021 Program Committee Member, Symposium on Computational Geometry (SoCG) 2023 Program Committee Member, Symposium on Computational Geometry (SoCG) 2014 Program Committee Member, Symposium on Computational Geometry (SoCG) 2018 Program Committee Member, Symposium on Computational Geometry (SoCG) 2014 Scientific Committee, ATMCS7, Torino, Italy 2012 AMS Proceedings 2022 AMS Proceedings 2022 Bulletin of Mathematical Biology 2023 Chaos 2021 Climate Dynamics 2021 <td>Organizer for Special Session at the Joint Math Meetings</td> <td>Jan 2013</td> | Organizer for Special Session at the Joint Math Meetings | Jan 2013 | | Interview for The Girls' Angle Bulletin, ISSN 2151-5700 Oct,Nov 2015 NYS Master Teacher Program Application Review Committee Sept 2014 Volunteer for FEMMES Capstone Events April 2011, 2011, 2012 Editorial Board & Conference Program Committees Inaugural Editor, El 3 Data Science 2024-Present 2024-Present 2024-Present 2024-Present 2024-Present 2024-Present 2024-Present Advances in Applied and Computational Topology, WinCompTop Special Issue Program Committee Member, Symposium on Computational Geometry (SoCG) 2023 2024 to Big Data" Workshop, IEEE Big Data Conference 2023-Present 2023 Program Committee Member, Symposium on Computational Geometry (SoCG) 3 2014, 2016 2014, 2016 Program Committee Member, Fill Workshop on Computational Geometry (SoCG) 4 2014, 2016 2014, 2016 Program Committee Member, Fill Workshop on Computational Geometry (SoCG) 4 2014, 2016 2014, 2016 Scientific Committee, ATMCS7, Torino, Italy Jul 2016 AMS Notices 2022 AMS Proceedings 2022 Bulletin of Mathematical Biology 2022 Chaos 2022 Computational Geometry: Theory and Applications 2015, 2019, 2024 Discrete and Computational Geometry (JoCG) 2018-2023 Journal of Applied and Computational Topology (APCT) 2018-2023 <td>Community Outreach</td> <td></td> | Community Outreach | | | Volunteer for FEMMES Capstone Events April 2011, April 2012 Editorial Boards & Conference Program Committees Inaugural Editorial Board Member, Computing in
Geometry and Topology (CGT) 2021-Present Associate Editor, EJP Data Science 2024-Present Guest Editor, La Mathematica 2023-Present Advances in Applied and Computational Topology, WinCompTop Special Issue Program Committee Member, Symposium on Computational Geometry (SoCC) 2023 Program Committee Member, Symposium on Computational Geometry (SoCC) 2014, 2016 2014, 2016 Scientific Committee, ATMCS7, Torino, Italy 2014, 2016 2014, 2016 AMS Notices 2022 2022 AMS Notices 2022 2022 AMS Proceedings 2022 2022 Bulletin of Mathematical Biology 2021 2021 Climate Dynamics 2021 2021 Computational Geometry: Theory and Applications 2015, 2019, 2021 Discrete and Computational Geometry 2015, 2019, 2021 Image and Vision Computing 2020 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) | Interview for The Girls' Angle Bulletin, ISSN 2151-5700 | Oct/Nov 2015 | | Inaugural Editorial Board Member, Computing in Geometry and Topology (CGT) 2021-Present Associate Editor, EPJ Data Science 2023-Present Guest Editor, La Mathematica 2023-Present Advances in Applied and Computational Topology, WinCompTop Special Issue 2023 Program Committee Member, Symposium on Computational Geometry (SoCG) 2023 Program Committee Member, Splications of Topological Data Analysis 2021 to Big Data* Workshop, IEEE Big Data Conference 3014, 2016 Program Committee Member, Fall Workshop on Computational Geometry (SoCG) 2018 Scientific Committee, ATMCS7, Torino, Italy 3012 2016 Applied Topology: Methods, Computation, and Science 2022 Review and Referee Journals AMS Proceedings 2022 Bulletin of Mathematical Biology 2022 Claos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2016 Discrete and Computational Geometry 2016 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 | 9 ** | - | | Inaugural Editorial Board Member, Computing in Geometry and Topology (CGT) 2021-Present Associate Editor, EPJ Data Science 2023-Present Guest Editor, La Mathematica 2023-Present Advances in Applied and Computational Topology, WinCompTop Special Issue 2023 Program Committee Member, Symposium on Computational Geometry (SoCG) 2023 Program Committee Member, Splications of Topological Data Analysis 2021 to Big Data* Workshop, IEEE Big Data Conference 3014, 2016 Program Committee Member, Fall Workshop on Computational Geometry (SoCG) 2018 Scientific Committee, ATMCS7, Torino, Italy 3012 2016 Applied Topology: Methods, Computation, and Science 2022 Review and Referee Journals AMS Proceedings 2022 Bulletin of Mathematical Biology 2022 Claos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2016 Discrete and Computational Geometry 2016 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 | Editorial Boards & Conference Program Committees | | | to Big Data' Workshop, IEEE Big Data Conference Program Committee Member, Symposium on Computational Geometry (SoCG) Program Committee Member, Fall Workshop on Computational Geometry Scientific Committee, ATMCS7, Torino, Italy Applied Topology: Methods, Computation, and Science Review and Referee Journals AMS Notices AMS Proceedings AMS Proceedings Bulletin of Mathematical Biology Chaos Chaos Chaos Computational Geometry: Theory and Applications Discrete and Computational Geometry Image and Vision Computing Medical Image Analysis Journal of Applied and Computational Topology (APCT) Journal of Applied and Computational Geometry (JoCG) Journal of Machine Learning Research (JMLR) Journal of Computational and Graphical Statistics PLOS ONE PALSE Science Advances Science Advances Science Advances Science Advances SIAM Journal on Applied Algebra and Geometry (SIAGA) SIAM SPICE AND | Inaugural Editorial Board Member, Computing in Geometry and Topology (CGT Associate Editor, EPJ Data Science Guest Editor, La Mathematica *Advances in Applied and Computational Topology, WinCompTop Special Is Program Committee Member, Symposium on Computational Geometry (SoCG) | 2024-Present
2023-Present
sue
2023 | | Journals 2022 AMS Notices 2022 AMS Proceedings 2022 Bulletin of Mathematical Biology 2023 Chaos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2015 Discrete and Computational Geometry 2015, 2019, 2024 Image and Vision Computing 2020 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018-2023 Journal of Computational Geometry (JoCG) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 Journal of Computational and Graphical Statistics 2023, 2024 Patterns 2021 PLOS ONE 2015, 2016 PNAS 2022 Science Advances 2021 Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 | to Big Data" Workshop, IEEE Big Data Conference Program Committee Member, Symposium on Computational Geometry (SoCG) Program Committee Member, Fall Workshop on Computational Geometry Scientific Committee, ATMCS7, Torino, Italy | 2014, 2016 | | AMS Notices 2022 AMS Proceedings 2022 Bulletin of Mathematical Biology 2023 Chaos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2016 Discrete and Computational Geometry 2015, 2019, 2024 Image and Vision Computing 2020 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018-2023 Journal of Computational Geometry (JoCG) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 Journal of Computational and Graphical Statistics 2023, 2024 Patterns 2021 PLOS ONE 2015, 2016 PNAS 2022 Science Advances 2021 Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | Review and Referee | | | AMS Notices 2022 AMS Proceedings 2022 Bulletin of Mathematical Biology 2023 Chaos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2016 Discrete and Computational Geometry 2015, 2019, 2024 Image and Vision Computing 2020 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018-2023 Journal of Computational Geometry (JoCG) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 Journal of Computational and Graphical Statistics 2023, 2024 Patterns 2021 PLOS ONE 2015, 2016 PNAS 2022 Science Advances 2021 Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | Journals | | | AMS Proceedings 2022 Bulletin of Mathematical Biology 2023 Chaos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2016 Discrete and Computational Geometry 2015, 2019, 2024 Image and Vision Computing 2020 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018-2023 Journal of Computational Geometry (JoCG) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 Journal of Computational and Graphical Statistics 2023, 2024 Patterns 2021 PLOS ONE 2015, 2016 PNAS 2022 Science Advances 2021 Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | | 2022 | | Bulletin of Mathematical Biology Chaos Climate Dynamics Computational Geometry: Theory and Applications Discrete and Computational Geometry Topology (APCT) Discrete and Computational Topology (APCT) Discrete and Computational Geometry (JoCG) Discrete and Computational Geometry (JoCG) Discrete and Computational Geometry (JoCG) Discrete and Computational Geometry (JoCG) Discrete and Computational and Graphical Statistics Discrete and Computational and Graphical Statistics Discrete and Computational and Graphical Statistics Discrete and Computational and Graphical Statistics Discrete and Computational and Graphical Statistics Discrete and Computational Applications Computation | | | | Chaos 2021 Climate Dynamics 2021 Computational Geometry: Theory and Applications 2016 Discrete and Computational Geometry 2015, 2019, 2024 Image and Vision Computing 2020 Medical Image Analysis 2020 Journal of Applied and Computational Topology (APCT) 2018-2023 Journal of Computational Geometry (JoCG) 2018, 2019, 2021 Journal of Machine Learning Research (JMLR) 2017 Journal of Computational and Graphical Statistics 2023, 2024 Patterns 2021 PLOS ONE 2015, 2016 PNAS 2022 Science Advances 2021 Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | <u> </u> | | | Climate Dynamics2021Computational Geometry: Theory and Applications2016Discrete and Computational Geometry2015, 2019, 2024Image and Vision Computing2020Medical Image Analysis2020Journal of Applied and Computational Topology (APCT)2018-2023Journal of Computational Geometry (JoCG)2018, 2019, 2021Journal of Machine Learning Research (JMLR)2017Journal of Computational and Graphical Statistics2023, 2024Patterns2021PLOS ONE2015, 2016PNAS2022Science Advances2021Science Advances2021Scientific Reports2023SIAM Journal on Applied Algebra and Geometry (SIAGA)2017SIAM Journal on Mathematics of Data Science (SIMODS)2022SIAM
Review2021IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)2019, 2020, 2023Transactions of Mathematics and Its Applications2023 | | | | Computational Geometry: Theory and Applications2016Discrete and Computational Geometry2015, 2019, 2024Image and Vision Computing2020Medical Image Analysis2020Journal of Applied and Computational Topology (APCT)2018-2023Journal of Computational Geometry (JoCG)2018, 2019, 2021Journal of Machine Learning Research (JMLR)2017Journal of Computational and Graphical Statistics2023, 2024Patterns2021PLOS ONE2015, 2016PNAS2022Science Advances2021Scientific Reports2023SIAM Journal on Applied Algebra and Geometry (SIAGA)2017SIAM Journal on Mathematics of Data Science (SIMODS)2022SIAM Review2021IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)2019, 2020, 2023Transactions of Mathematics and Its Applications2023 | Climate Dynamics | | | Discrete and Computational Geometry Image and Vision Computing Medical Image Analysis Journal of Applied and Computational Topology (APCT) Journal of Computational Geometry (JoCG) Journal of Machine Learning Research (JMLR) Journal of Computational and Graphical Statistics Patterns 2021 PLOS ONE PNAS 2022 Science Advances Science Advances Science Advances Scientific Reports SIAM Journal on Applied Algebra and Geometry (SIAGA) SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review 2021 EEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Transactions of Mathematics and Its Applications 2020 2020 2020 2020 2020 2021 2021 202 | | | | Image and Vision Computing2020Medical Image Analysis2020Journal of Applied and Computational Topology (APCT)2018-2023Journal of Computational Geometry (JoCG)2018, 2019, 2021Journal of Machine Learning Research (JMLR)2017Journal of Computational and Graphical Statistics2023, 2024Patterns2021PLOS ONE2015, 2016PNAS2022Science Advances2021Scientific Reports2023SIAM Journal on Applied Algebra and Geometry (SIAGA)2017SIAM Journal on Mathematics of Data Science (SIMODS)2022SIAM Review2021IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)2019, 2020, 2023Transactions of Mathematics and Its Applications2023 | | | | Medical Image Analysis2020Journal of Applied and Computational Topology (APCT)2018-2023Journal of Computational Geometry (JoCG)2018, 2019, 2021Journal of Machine Learning Research (JMLR)2017Journal of Computational and Graphical Statistics2023, 2024Patterns2021PLOS ONE2015, 2016PNAS2022Science Advances2021Scientific Reports2021SiAM Journal on Applied Algebra and Geometry (SIAGA)2017SIAM Journal on Mathematics of Data Science (SIMODS)2022SIAM Review2021IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)2019, 2020, 2023Transactions of Mathematics and Its Applications2023 | - " | , , | | Journal of Applied and Computational Topology (APCT) Journal of Computational Geometry (JoCG) Journal of Machine Learning Research (JMLR) Journal of Computational and Graphical Statistics Patterns PLOS ONE PNAS Science Advances Science Advances Scientific Reports SiAM Journal on Applied Algebra and Geometry (SIAGA) SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review 1021 EEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Transactions of Mathematics and Its Applications 2018, 2019, 2021 2018, 2019, 2023, 2024 2023, 2024 2024 2025 2026 2027 2027 2028 2029 2020 | • • | | | Journal of Computational Geometry (JoCG) Journal of Machine Learning Research (JMLR) Journal of Computational and Graphical Statistics Patterns PLOS ONE PLOS ONE PNAS Science Advances Science Advances Scientific Reports SIAM Journal on Applied Algebra and Geometry (SIAGA) SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review LEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Transactions of Mathematics and Its Applications 2017 2018, 2019, 2021 2017 2017 2018, 2019, 2023, 2024 2021 2021 2022 2023 2024 2024 2025 2026 2027 2027 2028 2029 2029 2020 | | | | Journal of Machine Learning Research (JMLR) Journal of Computational and Graphical Statistics 2023, 2024 Patterns PLOS ONE PNAS Science Advances Science Advances Scientific Reports SIAM Journal on Applied Algebra and Geometry (SIAGA) SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review LEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Transactions of Mathematics and Its Applications 2021 2022 2023 2024 2025 2026 2027 2027 2028 2029 2029 2029 2020 | | | | Journal of Computational and Graphical Statistics Patterns 2021 PLOS ONE PNAS Science Advances Scientific Reports SiAM Journal on Applied Algebra and Geometry (SIAGA) SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review 12023 SIAM Review 12024 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Transactions of Mathematics and Its Applications 2023 2024 2025 2026 2027 2027 2028 2029 | - , | | | Patterns PLOS ONE PLOS ONE PNAS 2015, 2016 PNAS 2022 Science Advances Scientific Reports 2021 Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | _ , | | | PLOS ONE PNAS 2015, 2016 PNAS 2022 Science Advances Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | | | | PNAS Science Advances Scientific Reports SIAM Journal on Applied Algebra and Geometry (SIAGA) SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review SIAM Review 12021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | | | | Science Advances2021Scientific Reports2023SIAM Journal on Applied Algebra and Geometry (SIAGA)2017SIAM Journal on Mathematics of Data Science (SIMODS)2022SIAM Review2021IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)2019, 2020, 2023Transactions of Mathematics and Its Applications2023 | | , | | Scientific Reports 2023 SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | | | | SIAM Journal on Applied Algebra and Geometry (SIAGA) 2017 SIAM Journal on Mathematics of Data Science (SIMODS) 2022 SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | | | | SIAM Journal on Mathematics of Data Science (SIMODS) SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) Transactions of Mathematics and Its Applications 2023 | • | | | SIAM Review 2021 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2019, 2020, 2023 Transactions of Mathematics and Its Applications 2023 | | | | IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)2019, 2020, 2023Transactions of Mathematics and Its Applications2023 | · · · · · · · · · · · · · · · · · · · | | | Transactions of Mathematics and Its Applications 2023 | | | | | , | | | | | | # Conferences International Symposium on Algorithms and Computation (ISAAC) Symposium on Computational Geometry (SoCG) Symposium on Discrete Algorithms (SoDA) International Conference on Robotics and Automation (ICRA) IEEE Scientific Visualization (SciVis) 2017 2018-2024 2017, 2020 2019 # Funding agencies NSF: CISE 2016, 2018, 2019, 2021, 2022 NSF: DMS 2018, 2019 AFOSR 2022 #### Other MathSciNet 2018-Present zbMath 2021-Present # PROFESSIONAL AFFILIATIONS American Mathematical Society (AMS) Society for Industrial and Applied Mathematics (SIAM) Association for Women in Mathematics (AWM) Association for Computing Machinery (ACM) Math Alliance Mentor National Association of Mathematicians (NAM) American Harp Society (AHS) # TECHNICAL STRENGTHS Software and Coding Python, MATLAB, R, LATEX, Inkscape, HTML, CSS Operating Systems Linux, Windows, Android